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Cluster algorithm for Potts models with fixed spin densities
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~Received 3 May 2000; revised manuscript received 16 June 2000!

A cluster algorithm is presented for the simulation of theq-state Potts models in which the number of spins
is conserved in each state. The algorithm constructs Fortuin-Kasteleyn cluster configurations from spin con-
figurations, in a way identical to the Swendsen-Wang algorithm; the spin assignment to these clusters is,
however, different, and conserves the number of spins for each state. Compared to traditional nonlocal spin-
exchange algorithms, the cluster algorithm presented here suffers less from critical slowing down, and conse-
quently is more efficient near the critical temperature.

PACS number~s!: 02.70.Lq, 05.50.1q, 64.60.Ht, 75.10.Hk
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I. INTRODUCTION

Before 1987, the Potts model was almost exclusiv
simulated by means of the Metropolis algorithm@1#, in
which single-spin updates are proposed and either acce
or rejected depending on the change in energy. This a
rithm works quite satisfactorily, except close to the critic
point. At the critical temperature, the correlation times
crease with system size asLz, with a critical dynamic expo-
nent equal to or slightly above 2: for the two-state Po
model ~Ising model!, the critical dynamical exponent is re
ported to bez52.16760.001 in two andz52.0260.02 in
three dimensions@2#. The introduction of cluster algorithm
has greatly advanced the accuracy with which critical pr
erties of the Potts model and many other models in statis
physics can be studied. The first widely used cluster al
rithm was introduced by Swendsen and Wang@3,4#; we will
describe their algorithm in Sec. II A. The dynamic expone
of the Swendsen-Wang algorithm in the two- and thr
dimensional Ising model is reported to bez50.2560.01 and
z50.5460.02, respectively @5#, while for the two-
dimensional three-state Potts model, a dynamical critical
ponent ofz50.51560.002 is reported@6#: cluster algorithms
are able to significantly reduce critical slowing down.

To study multicomponent lattice gases in the coexiste
regime, for instance to study interfaces or equilibrium crys
shapes, one has to fix the number of particles in the lat
gas for each component, i.e., the spin density for each s
One typically resorts to spin-exchange dynamics, with
unfortunate consequence of a critical slowing down at le
as severe as experienced with the Metropolis algorithm
plied to the regular Potts model. The usual cluster algorith
do not conserve the spin densities. For the conserved-or
parameter Ising model, Heringa and Blo¨te @7,8# recently in-
troduced a cluster algorithm, which is in spirit related to t
Wolff algorithm @9,4#. It is reported to have hardly any criti
cal slowing down, with a dynamical exponent ofz50.21.
This algorithm has not been generalized to Potts models
more than two states.

In this paper, we present a modification of the Swends
Wang algorithm, to conserve the spin densities. In the
lowing section, we describe their algorithm, and introdu
our modified density-conserving cluster algorithm. In S
III, we present measurements of the critical dynamic ex
PRE 621063-651X/2000/62~4!/5830~5!/$15.00
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nent for our algorithm, and show its efficiency. The paper
concluded with a summary and conclusions, and a discus
of future work.

II. CLUSTER ALGORITHMS

A. The Swendsen-Wang algorithm

The Swendsen-Wang algorithm is designed to simu
the Potts model, defined by the Hamiltonian

H52J(
^ i , j &

d~s i ,s j !, ~1!

in which J is the coupling constant,d denotes the Kronecke
delta function, and the summation runs over all pairs
nearest-neighbor sites, each having a spin with values
51, . . . ,Q). We use the usual symbolsN for the number of
lattice sites,L for the lateral dimension of the lattice wit
periodic boundary conditions, andr i5(1/N)(kd(s i ,k) for
the density of spins with valuei. The number of different
spin valuesQ can have any integer value.

In this algorithm, the entire lattice is divided into cluste
of aligned spins, to each of which a random new value
assigned. In detail, one step of the algorithm proceeds
follows. ~i! Visit all nearest-neighbor pairs of lattice sites; d
nothing if the two spins are not aligned, but if they ar
activate the bond between those two sites with a probab
Pc512exp(2bJ), whereb is the inverse temperature.~ii !
Group lattice sites that are connected by such activa
bonds into clusters.~iii ! Select a random new spin value fo
each cluster, and assign this spin value to each of the s
constituting the cluster. Steps~i!–~iii ! are to be repeated
many times, to obtain a set of sample configurations.

The proof of correctness for our density-conserving cl
ter algorithm is based on that for the Swendsen-Wang a
rithm, which is presented in the remainder of this secti
First we show detailed balance, next we discuss ergodic

Suppose we denote the spin configuration before and a
the move byCa andCb , respectively, with total energiesEa
andEb , and the intermediate cluster configurationCm ~also
known as the Fortuin-Kasteleyn representation@10#!; further-
more, we write the probability to move from a configuratio
X to configurationY as T(X→Y). Then, the probability to
move from a spin configurationCa to a cluster configuration
5830 ©2000 The American Physical Society
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Cm is a product with factorsPc over all nearest-neighbo
pairs of spins that are connected, times a product with fac
12Pc over all aligned nearest-neighbor pairs of spins t
are disconnected:

T~Ca→Cm!5 )
^ i , j &

~Pc! )
^ i , j &

~12Pc!

s i
(a)5s j

(a) s i
(a)5s j

(a)

i , j conn. i , j disconn. ~2!

and a similar expression forT(Cb→Cm). Since spins that
are connected are necessarily aligned both before and
the move, the first product on the right-hand side is equa
T(Ca→Cm) and T(Cb→Cm). All factors in the second
product on the right-hand side dealing with pairs of sp
that are aligned both before and after the move are also e
in T(Ca→Cm) andT(Cb→Cm). That leaves in the ratio o
the transition rates only the factors dealing with disconnec
pairs of spins that are aligned either in configurationCa or in
configurationCb , but not both. The ratio of the transitio
ratesT(Ca→Cm) andT(Cb→Cm) therefore reduces to

T~Ca→Cm!

T~Cb→Cm!
5 )

^ i , j &
~12Pc! Y )

^ i , j &
~12Pc!.

s i
(a)5s j

(a) s i
(a)Þs j

(a)

s i
(b)Þs j

(b) s i
(b)5s j

(b) ~3!

Using that ln(12Pc)52bJ, in combination with some re
writing, we obtain for the logarithm of this ratio

ln„T~Ca→Cm!…2 ln„T~Cb→Cm!…

52bJ(
^ i , j &

@d~s i
(a) ,s j

(a)!2d~s i
(b) ,s j

(b)!#. ~4!

As can easily been seen from the Hamiltonian Eq.~1!, this is
equal to b(Ea2Eb). Since T(Cm→Ca)5T(Cm→Cb)
522n, wheren is the number of clusters inCm , detailed
balance follows:

T~Cb→Ca!

T~Ca→Cb!
5

T~Cb→Cm!T~Cm→Ca!

T~Ca→Cm!T~Cm→Cb!

5exp„2b~Ea2Eb!…. ~5!

In addition to obeying detailed balance, the algorithm is
godic, since there is a finite probability that in a given mo
all clusters will contain one site only, to which any value c
be assigned. Since this algorithm is ergodic and satisfies
tailed balance, it is guaranteed that eventually these sam
configurations will be drawn from the Boltzmann distrib
tion for the regular Potts model. The densitiesr i are not
conserved in the Swendsen-Wang algorithm.

B. Density-conserving cluster algorithm

The topic of this paper is to present a modification to t
algorithm that ensures the conservation of the densities.
modification is made in step~iii !, in which the new spin
values are assigned: rather than assigning random spin
rs
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ues to each cluster, we redistribute spin values over the c
ters while conserving the spin densities. As for the origin
Swendsen-Wang algorithm, the general idea is a two-s
approach,Ca→Cm→Cb , where all the energetics require
for obtaining detailed balance are incorporated in the c
struction of the clusters, and detailed balance is achieved
conservation of the propertyT(Cm→Ca)5T(Cm→Cb).

The first step towards such an algorithm is to devise
elementary move. The move we are looking for is identi
ing one set of aligned clusters with spin valueq1 and another
such set with spin valueq2Þq1 with exactly the same are
~number of sites!, and then exchanging the spin valuesq1
andq2.

How do we identify such sets? First of all, for each sp
valuei 51, . . . ,Q we group all clusters with spin valuei into
the setSi . Next, within each set we list these clusters
random order, and keep track of the cumulative area. Ev
time that in two sets the same value for the cumulative a
occurs, we have found anexchange point. If the spin values
are exchanged in all clusters up to the exchange point, w
the original spin values in all other clusters are conserv
the spin values of two sets of clusters are exchanged with
violation of the spin-density conservation~see Fig. 1!.

Unless extra measurements are taken, an algorithm b
on these elementary moves will not obey detailed balan
the probability of the occurrence of an exchange point is
necessarily equal before and after the cluster exchange.
denote the total number of clusters with spin valueq before
the exchange takes place asnq . Suppose that the exchang
takes place between clusters with spin 1 and 2, and that
number of clusters with spin 1 and 2 that are to be
changed isa1 anda2, respectively, while the number of clus
ters with spin 1 and 2 that are not to be exchanged isn1
2a1 andn22a2, respectively. The likelihood that there is a
exchange point exactly between these sets of clusters is
equal to

T~→ !5F S n1

a1
D S n2

a2
D G21

, ~6!

while after the exchange this probability becomes

T~→ !5F S n18

a2
D S n28

a1
D G21

5F S a21n12a1

a2
D S a11n22a2

a1
21 D G21

. ~7!

To restore detailed balance, it suffices to introduce a M
tropolis acceptance ratio:

Pa5minF1,
n18!n28!

n1!n2! G . ~8!

Once this acceptance probability is included, the elemen
move can be used for a correct algorithm, since for t
configurations X and Y, we now restored the propert
T(Cm→X)5T(Cm→Y).
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5832 PRE 62R. P. BIKKER AND G. T. BARKEMA
In an actual implementation, the total procedure is
make for each spin value a cumulative list of clusters, wh
the clusters are placed in random order. Next, all excha
points are identified; the corresponding exchanges are
cepted with the probability as given in Eq.~8!. It can be
verified that also for the concatenation of exchange poi
the product over all exchange points of the ratio of forwa
and backward acceptance probabilities, as given in Eq.~8!,
equals

)
q51

Q

~nq8! !Y )
q51

Q

~nq! !, ~9!

which exactly cancels the ratio of the number of ways
which the clusters can be sorted, i.e., the ratio of selec
probabilities in the forward and backward direction. Con
quently,T(Cm→Ca)5T(Cm→Cb).

The density-conserving algorithm is ergodic for the sa
reason that the Swendsen-Wang algorithm is ergodic: th
is a finite probability that all clusters contain one site on
and then each of these can obtain any spin value~under the
constraint on the densities!.

Having shown that the basic steps of our algorithm
correct, we will now summarize the procedure in the form
a stepwise algorithm. Steps number~i! and ~ii ! of the
Swendsen-Wang algorithm remain unchanged. Step~iii ! be-
comes the following.~iiia! For each stateqP$1, . . . ,Q%, list
all clusters with this spin value in listSq in random order.
~iiib ! Order the lists with respect to the total area of th
not-yet-assigned clusters. Use a random order for lists w

FIG. 1. Assignment of new spin values to the clusters in
three-state Potts model. The upper and lower part are the situa
before and after cluster assignment, respectively. The length of
bar corresponds to the total massr iN in the setSi . The different
shades indicate different spin values before the assignment.
thick lines separate subsequent clusters in each list. The dotted
indicate the exchange pointsA, B, andC, where two of the masse
coincide and after which the corresponding spin values are
changed with the probability given in Eq.~8!.
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equal such areas. If the first two lists~those with the larges
and next-largest areas! are equal, exchange their colors wi
the probability as given by Eq.~8!. Select one cluster from
the first list and assign to it a new color. Update the order
and repeat this step until spin values are assigned to all c
ters.

Note that the computational effort required for step~iii !
scales with the total number of clustersn5(qnq , whereas
step ~ii ! scales with the number of spinsN in the system.
Sincen!N, step~iii ! is repeatedN/(2n) times for each time
step~ii ! is performed, and we still have an implementation
which the computational effort per sweep scales linea
with the number of sites; this greatly decreases the auto
relation time. It actually also reduces the dynamical critic
exponentz, since the ratioN/n varies with the system size

III. COMPUTATIONAL PROPERTIES

In order to compare the efficiency of the densit
conserving cluster algorithm presented above with that
nonlocal spin-exchange~Kawasaki@11#! dynamics, we have
computed the energy autocorrelation times in both the tw
and the three-state Potts models, at critical temperature
equal spin densities, for several system sizes. For all d
points the correlation timet was obtained from a least
squares fit of the forme2t/t, to the energy autocorrelatio
function. For the spin-exchange algorithm, these fits w
done in the region where the autocorrelation drops frome21

to e22; for the cluster algorithm, we fitted in a broader r
gion ~from 1 to e23), in order to have enough points to fi
Time is measured in Monte Carlo steps per site~MCSS!; for
the cluster algorithm, one MCSS is equal to one lattice
date. All runs where started from a random configurati
which was thermalized over a time varying from 6000
60 000 MCSS. In order to generate enough statistics, the
length of the runs was set to ten times the thermalizat
time. The statistical errors were determined by repeat
each run 10 to 50 times.

Figures 2 and 3 show the correlation times as a funct
of the linear system sizeL of the two- and three-dimensiona
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FIG. 2. Correlation timet as a function of linear system sizeL
for the two-dimensional two-state Potts model, for spin-excha
dynamics~squares! and the magnetization-conserving cluster alg
rithm ~circles!. The lines have exponents ofz52 andz50.38.



in
o

od
o

n

m
tic
st
fo

ot
lu
-

tio

l
otts

we

rs
t-
ting
the
ove
m-
cal
cal
ing

thm
n-

nt

-
er-
by

y
ved
ter-
ding
e
ium

eu

ng
o

ng
o

nge
o-

PRE 62 5833CLUSTER ALGORITHM FOR POTTS MODELS WITH . . .
two-state Potts model, respectively.
For the two-state Potts model, using the nonlocal sp

exchange algorithm, we find a critical dynamic exponent
z52.0 in both two and three dimensions. This is in go
agreement with the exponents of the three-dimensional n
conserving Metropolis algorithm (z52.0260.02) but not
with the critical exponent for the two-dimensional nonco
serving Metropolis algorithm (z52.16760.001). Perhaps
this is an indication that the conservation of the order para
eter affects the critical dynamical exponent, but our statis
are not conclusive. Using our new density-conserving clu
algorithm for the two-state Potts model, we find values
the critical dynamic exponent ofz50.3860.01 in two and
z50.6660.02 in three dimensions. These values are b
slightly larger than nonconserved Swendsen-Wang va
(z50.2560.01 andz50.5460.02 for two and three dimen
sions, respectively!.

Figures 4 and 5 show the correlation times as a func

FIG. 3. Correlation timet as a function of linear system sizeL
for the three-dimensional two-state Potts model, for spin-excha
dynamics~squares! and the magnetization-conserving cluster alg
rithm ~circles!. The lines have exponents ofz52 andz50.66.

FIG. 4. Correlation timet as a function of linear system sizeL
for the two-dimensional three-state Potts model, for spin-excha
dynamics~squares! and the magnetization-conserving cluster alg
rithm ~circles!. The lines have exponents ofz52 andz50.63.
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of the linear system sizeL of the two- and three-dimensiona
three-state Potts model, respectively. For the three-state P
model, using the Metropolis algorithm we findz52.0 in both
two and three dimensions. Using our cluster algorithm
find values ofz50.6360.01 in two andz50.9560.02 in
three dimensions.

As expected, we find that the cluster algorithm suffe
significantly less from critical slowing down and clearly ou
performs spin-exchange dynamics at physically interes
lattice sizes in both two and three dimensions and in both
Ising model and the three-state Potts model. Since one m
in our cluster algorithm takes an amount of CPU time co
parable to what is required for one sweep in the nonlo
spin exchange, our cluster algorithm outperforms nonlo
spin exchange by one or two orders of magnitude, depend
on the system size.

IV. SUMMARY AND FUTURE WORK

We have presented a density-conserving cluster algori
for the Potts model. This algorithm is only moderately se
sitive to critical slowing down: its dynamic critical expone
is found to bez50.3860.01 andz50.6660.02 for the two-
and three-dimensional Ising model, respectively, andz
50.6360.01 and z50.9560.02 for the two- and three
dimensional three-state Potts model, respectively. It outp
forms the traditional algorithm, nonlocal spin exchange,
one or two orders of magnitude.

In future research, we will use this algorithm to stud
wetting properties, where the wetting takes place at a cur
interface between two coexisting phases; such nonflat in
faces arise, for instance, between a droplet and a surroun
fluid. Other future applications will include the study of lin
tension between three coexisting phases, and equilibr
shapes in multicomponent mixtures.
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FIG. 5. Correlation timet as a function of linear system sizeL
for the three-dimensional three-state Potts model, for spin-excha
dynamics~squares! and the magnetization-conserving cluster alg
rithm ~circles!. The lines have exponents ofz52 andz50.95.
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