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Cluster algorithm for Potts models with fixed spin densities
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A cluster algorithm is presented for the simulation of thstate Potts models in which the number of spins
is conserved in each state. The algorithm constructs Fortuin-Kasteleyn cluster configurations from spin con-
figurations, in a way identical to the Swendsen-Wang algorithm; the spin assignment to these clusters is,
however, different, and conserves the number of spins for each state. Compared to traditional nonlocal spin-
exchange algorithms, the cluster algorithm presented here suffers less from critical slowing down, and conse-
quently is more efficient near the critical temperature.

PACS numbse(s): 02.70.Lq, 05.50tq, 64.60.Ht, 75.10.Hk

I. INTRODUCTION nent for our algorithm, and show its efficiency. The paper is
concluded with a summary and conclusions, and a discussion

Before 1987, the Potts model was almost exclusivelyof future work.
simulated by means of the Metropolis algorithr], in
which single-spin updates are proposed and either accepted Il. CLUSTER ALGORITHMS
or rejected depending on the change in energy. This algo-
rithm works quite satisfactorily, except close to the critical
point. At the critical temperature, the correlation times in- The Swendsen-Wang algorithm is designed to simulate
crease with system size &$, with a critical dynamic expo- the Potts model, defined by the Hamiltonian
nent equal to or slightly above 2: for the two-state Potts
model (Ising mode), the critical dynamical exponent is re- _ o
ported to bez=2.167+0.001 in two andz=2.02+0.02 in H JQED o0y, @
three dimension§2]. The introduction of cluster algorithms
has greatly advanced the accuracy with which critical propin which J is the coupling constant] denotes the Kronecker
erties of the Potts model and many other models in statisticalelta function, and the summation runs over all pairs of
physics can be studied. The first widely used cluster algonearest-neighbor sites, each having a spin with valwe (
rithm was introduced by Swendsen and Waagl; we will =1,... Q). We use the usual symbaifor the number of
describe their algorithm in Sec. Il A. The dynamic exponentlattice sites,L for the lateral dimension of the lattice with
of the Swendsen-Wang algorithm in the two- and three{periodic boundary conditions, ang=(1/N),46(o;,k) for
dimensional Ising model is reported to be 0.25+-0.01 and the density of spins with value The number of different
z=0.54+0.02, respectively [5], while for the two- spin valuesQ can have any integer value.
dimensional three-state Potts model, a dynamical critical ex- In this algorithm, the entire lattice is divided into clusters
ponent ofz=0.515+0.002 is reported6]: cluster algorithms  of aligned spins, to each of which a random new value is
are able to significantly reduce critical slowing down. assigned. In detail, one step of the algorithm proceeds as

To study multicomponent lattice gases in the coexistencéollows. (i) Visit all nearest-neighbor pairs of lattice sites; do
regime, for instance to study interfaces or equilibrium crystainothing if the two spins are not aligned, but if they are,
shapes, one has to fix the number of particles in the latticactivate the bond between those two sites with a probability
gas for each component, i.e., the spin density for each stat€.=1—exp(—3J), whereg is the inverse temperaturéi)

One typically resorts to spin-exchange dynamics, with theGroup lattice sites that are connected by such activated
unfortunate consequence of a critical slowing down at leashonds into clusterdiii) Select a random new spin value for
as severe as experienced with the Metropolis algorithm apeach cluster, and assign this spin value to each of the sites
plied to the regular Potts model. The usual cluster algorithmsonstituting the cluster. Step$)—(iii) are to be repeated
do not conserve the spin densities. For the conserved-ordemany times, to obtain a set of sample configurations.
parameter Ising model, Heringa and &¢7,8] recently in- The proof of correctness for our density-conserving clus-
troduced a cluster algorithm, which is in spirit related to theter algorithm is based on that for the Swendsen-Wang algo-
Wolff algorithm[9,4]. It is reported to have hardly any criti- rithm, which is presented in the remainder of this section.
cal slowing down, with a dynamical exponent b£0.21.  First we show detailed balance, next we discuss ergodicity.
This algorithm has not been generalized to Potts models with Suppose we denote the spin configuration before and after
more than two states. the move byC, andC,, respectively, with total energids,

In this paper, we present a modification of the SwendsenandE,, and the intermediate cluster configuratiop, (also
Wang algorithm, to conserve the spin densities. In the folknown as the Fortuin-Kasteleyn representafib®); further-
lowing section, we describe their algorithm, and introducemore, we write the probability to move from a configuration
our modified density-conserving cluster algorithm. In Sec.X to configurationY as T(X—Y). Then, the probability to
[ll, we present measurements of the critical dynamic expomove from a spin configuratio@, to a cluster configuration

A. The Swendsen-Wang algorithm
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C., is a product with factord®. over all nearest-neighbor ues to each cluster, we redistribute spin values over the clus-
pairs of spins that are connected, times a product with factorers while conserving the spin densities. As for the original
1-P. over all aligned nearest-neighbor pairs of spins thaiSwendsen-Wang algorithm, the general idea is a two-step
are disconnected: approachC,—C,—C,, where all the energetics required
for obtaining detailed balance are incorporated in the con-
struction of the clusters, and detailed balance is achieved by

i s conservation of the properf§(C,,—C,)=T(C,—Cy).

) (i.J) ) . ! .
@ (@ @ (@ The first step towards such an algonthm is to d_eV|se_ an
gj "= 0 gj "= 0 elementary move. The move we are looking for is identify-
i,j conn. i,j disconn. 2 ing one set of aligned clusters with spin valyeand another
such set with spin valug,+# q; with exactly the same area

and a similar expression foF(C,— C,,). Since spins that (number of sites and then exchanging the spin valugs
are connected are necessarily aligned both before and aftandq,.
the move, the first product on the right-hand side is equal in How do we identify such sets? First of all, for each spin
T(C,—C,) and T(C,—C,). All factors in the second valuei=1,...,Q we group all clusters with spin valliiénto
product on the right-hand side dealing with pairs of spinsthe setS;. Next, within each set we list these clusters in
that are aligned both before and after the move are also equedindom order, and keep track of the cumulative area. Every
in T(C,—C,) andT(C,—C,,). That leaves in the ratio of time that in two sets the same value for the cumulative area
the transition rates only the factors dealing with disconnectedccurs, we have found aexchange pointlf the spin values
pairs of spins that are aligned either in configuratiynor in  are exchanged in all clusters up to the exchange point, while
configurationCy,, but not both. The ratio of the transition the original spin values in all other clusters are conserved,

T(CamCm= 1l (P IT (1-Py)

ratesT(C,—C,,) andT(C,—C,,) therefore reduces to the spin values of two sets of clusters are exchanged without
violation of the spin-density conservatigsee Fig. 1
T(Ca—Ch) H (1-P,) H (1-P,) Unless extra measurements are taken, an algorithm based
m— o c W) ¢ on these elementary moves will not obey detailed balance:

the probability of the occurrence of an exchange point is not
o=@ o+ ol necessarily equal before and after the cluster exchange. We
o) £ (D) oD = (b &) denote the total number of clusters with spin vadukefore
i j [ J
the exchange takes place g. Suppose that the exchange
Using that In(:-P)=—2J, in combination with some re- takes place between clusters with spin 1 and 2, and that the

writing, we obtain for the logarithm of this ratio number of clusters with spin 1 and 2 that are to be ex-
changed is; anda,, respectively, while the number of clus-
IN(T(C,—C,))—In(T(C,—Cn) ters with spin 1 and 2 that are not to be exchanged,is

—a, andn,—a,, respectively. The likelihood that there is an
__ (a) _(a)y__ (b) _(b) exchange point exactly between these sets of clusters is then
= BJ% [8(0{,0{?)= 5 ,0{™)]. (4) gep y

equal to
As can easily been seen from the Hamiltonian &g, this is M) N2 -t
equal to B(E,—Ep). Since T(C,—Co=T(C,—Cy) T=)= ap/\a ’ ®
=2"", wheren is the number of clusters i€,,, detailed
balance follows: ) ) .
while after the exchange this probability becomes
T(Cp—Cy) _ T(Ch—Cr)T(C—Cy)
T(CamCp)  T(CamCr)T(Cn—Cy) ) (ni ny\ |
)=
=exp(— B(Ea—Ep)). ©) a2/ 1y
In addition to obeying detailed balance, the algorithm is er- _ Bt Ni—ay| [ tn—a; 7)
godic, since there is a finite probability that in a given move a, a; !

all clusters will contain one site only, to which any value can
be assigned. Since this algorithm is ergodic and satisfies d&-, yegtore detailed balance, it suffices to introduce a Me-
tailed balance, it is guaranteed that eventually these samp{?opons acceptance ratio: '

configurations will be drawn from the Boltzmann distribu-
tion for the regular Potts model. The densitigsare not
conserved in the Swendsen-Wang algorithm. . ni!ny!

n{!'ny! |

P,=min

8

B. Density-conserving cluster algorithm

The topic of this paper is to present a modification to thisOnce this acceptance probability is included, the elementary
algorithm that ensures the conservation of the densities. Thimove can be used for a correct algorithm, since for two
modification is made in stegii), in which the new spin configurationsX and Y, we now restored the property
values are assigned: rather than assigning random spin val{C,,— X)=T(C,,—Y).
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: for the two-dimensional two-state Potts model, for spin-exchange
dynamics(squaresand the magnetization-conserving cluster algo-
rithm (circles. The lines have exponents o2 andz=0.38.
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FIG. 1. Assignment of new spin values to the clusters in the

three-state Potts model. The upper and lower part are the situatiof1u@l such areas. If the first two ligthose with the largest
before and after cluster assignment, respectively. The length of ead'd Next-largest arepare equal, exchange their colors with
bar corresponds to the total mas® in the setS,. The different  the probability as given by Eq8). Select one cluster from
shades indicate different spin values before the assignment. TH&€ first list and assign to it a new color. Update the ordering
thick lines separate subsequent clusters in each list. The dotted lin@§d repeat this step until spin values are assigned to all clus-
indicate the exchange poirks B, andC, where two of the masses ters.
coincide and after which the corresponding spin values are ex- Note that the computational effort required for st@p)
changed with the probability given in E¢B). scales with the total number of clusters-=,n,, whereas
step (ii) scales with the number of spirs in the system.

In an actual implementation, the total procedure is toSincen<N, step(iii) is repeatedN/(2n) times for each time
make for each spin value a cumulative list of clusters, wheretep(ii) is performed, and we still have an implementation in
the clusters are placed in random order. Next, all exchangwhich the computational effort per sweep scales linearly
points are identified; the corresponding exchanges are agvith the number of sites; this greatly decreases the autocor-
cepted with the probability as given in E¢B). It can be relation time. It actually also reduces the dynamical critical
verified that also for the concatenation of exchange pointsexponentz, since the ratidN/n varies with the system size.
the product over all exchange points of the ratio of forward
and backward acceptance probabilities, as given in(&xq. Ill. COMPUTATIONAL PROPERTIES

equals . .
In order to compare the efficiency of the density-

Q Q conserving cluster algorithm presented above with that of
IT (ng!) IT (ng), (99  nhonlocal spin-exchang&awasaki[11]) dynamics, we have
q=1 q=1 computed the energy autocorrelation times in both the two-

and the three-state Potts models, at critical temperature and

which exactly cancels the ratio of the number of ways inequal spin densities, for several system sizes. For all data
which the clusters can be sorted, i.e., the ratio of selectiopoints the correlation timer was obtained from a least-
probabilities in the forward and backward direction. Conse-squares fit of the forme V7, to the energy autocorrelation
quently, T(C,—Co)=T(C,—Cy). function. For the spin-exchange algorithm, these fits were

The density-conserving algorithm is ergodic for the samedone in the region where the autocorrelation drops feorh
reason that the Swendsen-Wang algorithm is ergodic: ther® e~ 2; for the cluster algorithm, we fitted in a broader re-
is a finite probability that all clusters contain one site only,gion (from 1 toe™2), in order to have enough points to fit.
and then each of these can obtain any spin vaweler the  Time is measured in Monte Carlo steps per SMCSS); for
constraint on the densitips the cluster algorithm, one MCSS is equal to one lattice up-

Having shown that the basic steps of our algorithm aredate. All runs where started from a random configuration,
correct, we will now summarize the procedure in the form ofwhich was thermalized over a time varying from 6000 to

a stepwise algorithm. Steps numbéjy and (i) of the 60000 MCSS. In order to generate enough statistics, the total

Swendsen-Wang algorithm remain unchanged. 8Stepbe-  length of the runs was set to ten times the thermalization

comes the following(iiia) For each statge {1, ... Q}, list  time. The statistical errors were determined by repeating

all clusters with this spin value in lisg, in random order. each run 10 to 50 times.

(iiib) Order the lists with respect to the total area of their Figures 2 and 3 show the correlation times as a function

not-yet-assigned clusters. Use a random order for lists witlof the linear system size of the two- and three-dimensional
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FIG. 3. Correlation timer as a function of linear system site FIG. 5. Correlation timer as a function of linear system site

for the three-dimensional two-state Potts model, for spin-exchangéor the three-dimensional three-state Potts model, for spin-exchange
dynamics(squares and the magnetization-conserving cluster algo-dynamics(squaresand the magnetization-conserving cluster algo-
rithm (circles. The lines have exponents p&2 andz=0.66. rithm (circles. The lines have exponents p&2 andz=0.95.

two-state Potts model, respectively. of the linear system size of the two- and three-dimensional

For the two-state Potts model, using the nonlocal spinthree-state Potts model, respectively. For the three-state Potts
exchange algorithm, we find a critical dynamic exponent ofmodel, using the Metropolis algorithm we fize- 2.0 in both
z=2.0 in both two and three dimensions. This is in goodtwo and three dimensions. Using our cluster algorithm we
agreement with the exponents of the three-dimensional norfind values ofz=0.63+0.01 in two andz=0.95+0.02 in
conserving Metropolis algorithmz&2.02+0.02) but not  three dimensions.
with the critical exponent for the two-dimensional noncon- As expected, we find that the cluster algorithm suffers
serving Metropolis algorithm z2=2.167+0.001). Perhaps significantly less from critical slowing down and clearly out-
this is an indication that the conservation of the order paramperforms spin-exchange dynamics at physically interesting
eter affects the critical dynamical exponent, but our statisticdattice sizes in both two and three dimensions and in both the
are not conclusive. Using our new density-conserving clustelsing model and the three-state Potts model. Since one move
algorithm for the two-state Potts model, we find values forin our cluster algorithm takes an amount of CPU time com-
the critical dynamic exponent &f=0.38+0.01 in two and parable to what is required for one sweep in the nonlocal
z=0.66+0.02 in three dimensions. These values are botlspin exchange, our cluster algorithm outperforms nonlocal
slightly larger than nonconserved Swendsen-Wang valuespin exchange by one or two orders of magnitude, depending
(z=0.25+0.01 andz=0.54+0.02 for two and three dimen- on the system size.
sions, respective)y

Figures 4 and 5 show the correlation times as a function IV. SUMMARY AND FUTURE WORK

We have presented a density-conserving cluster algorithm
for the Potts model. This algorithm is only moderately sen-
sitive to critical slowing down: its dynamic critical exponent
is found to bez=0.38+0.01 andz=0.66* 0.02 for the two-
and three-dimensional Ising model, respectively, and
=0.630.01 andz=0.95+0.02 for the two- and three-
dimensional three-state Potts model, respectively. It outper-
forms the traditional algorithm, nonlocal spin exchange, by
one or two orders of magnitude.

In future research, we will use this algorithm to study
wetting properties, where the wetting takes place at a curved
interface between two coexisting phases; such nonflat inter-
faces arise, for instance, between a droplet and a surrounding
10° L L fluid. Other future applications will include the study of line

10 20 50 100 200 500 tension between three coexisting phases, and equilibrium

L (Lattice units) shapes in multicomponent mixtures.
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